Combined dopamine D(2) receptor antagonism and serotonin (5-HT)(1A) receptor agonism may improve efficacy and alleviate some side effects associated with classical antipsychotics. The present study describes the in vitro and in vivo characterization of 1-(2,3-dihydro-benzo[1,4]dioxin-5-yl)-4-[5-(4-fluoro-phenyl)-pyridin-3-ylmethyl]-piperazine monohydrochloride (SLV313), a D(2/3) antagonist and 5-HT(1A) agonist. SLV313 possessed high affinity at human recombinant D(2), D(3), D(4), 5-HT(2B), and 5-HT(1A) receptors, moderate affinity at 5-HT(7) and weak affinity at 5-HT(2A) receptors, with little-no affinity at 5-HT(4), 5-HT(6), alpha(1), and alpha(2) (rat), H(1) (guinea pig), M(1), M(4), 5-HT(3) receptors, and the 5-HT transporter. SLV313 had full agonist activity at cloned h5-HT(1A) receptors (pEC(50)=9.0) and full antagonist activity at hD(2) (pA(2)=9.3) and hD(3) (pA(2)=8.9) receptors. In vivo, SLV313 antagonized apomorphine-induced climbing and induced 5-HT(1A) syndrome behaviors and hypothermia, the latter behaviors being antagonized by the 5-HT(1A) antagonist WAY100635. In a drug discrimination procedure SLV313 induced full generalization to the training drug flesinoxan and was also antagonized by WAY100635. In the nucleus accumbens SLV313 reduced extracellular 5-HT and increased dopamine levels in the same dose range. Acetylcholine and dopamine were elevated in the hippocampus and mPFCx, the latter antagonized by WAY100635, suggesting possible 5-HT(1A)-dependent efficacy for the treatment of cognitive and attentional processes. SLV313 did not possess cataleptogenic potential (up to 60 mg/kg p.o.). The number of spontaneously active dopamine cells in the ventral tegmental area was reduced by SLV313 and clozapine, while no such changes were seen in the substantia nigra zona compacta following chronic administration. These results suggest that SLV313 is a full 5-HT(1A) receptor agonist and full D(2/3) receptor antagonist possessing characteristics of an atypical antipsychotic, representing a potential novel treatment for schizophrenia.