Influence of the counterion and the solvent molecules in the spin crossover system [Co(4-terpyridone)2]Xp.nH2O

Inorg Chem. 2006 May 29;45(11):4413-22. doi: 10.1021/ic060090u.

Abstract

A series of new complexes belonging to the [Co(4-terpyridone)2]X(p) x nS family (4-terpyridone = 2,6-bis(2-pyridyl)-4(1H)-pyridone) have been synthesized and characterized, using X-ray single crystal determination and magnetic susceptibility studies, to be X = [BF4]- (p = 2) and S = H2O for polymorphs 1 and 2, X = [BF4]- (p = 1) and [SiF6]2- (p = 0.5) and S = CH(3)OH for 3, X = [SiF6]2- (p = 1) and S = 3CH3OH and H2O for 4, X = [Co(NCS)4]2- (p = 1) and S = 0.5CH3OH for 5, X = I- (p = 2) and S = 5H2O for 6, X = [PF6]- (p = 1) for 7, and X = [NO3]- (p = 2) for 8. Compounds 1-7 can be grouped in three sets according to the space group in which they crystallize: (i) P1 triclinic (1, 3), (ii) P2(1) monoclinic (2), and (iii) P2(1)/c monoclinic (4-7). The tridentate 4-terpyridone ligands coordinate the Co(II) ions in a mer fashion defining essentially tetragonally compressed [CoN6] octahedrons. The Co-N axial bonds involving the pyridone rings are markedly shorter than the Co-N equatorial bonds collectively denoted as Co-N(central) and Co-N(distal), respectively. The differences in the average Co-N(central) or Co-N(distal) distances observed for 1-7 reflect the different spin states of Co(II). Complexes 7 and 4' are fully high spin (HS), while 5 and 6 are low spin (LS). However, the counterion [Co(NCS)4]2- in complex 5 is high spin. Complexes 1, 2, 3, and 8 exhibit spin-crossover behavior in the 400-100 K temperature region. Compounds 1 and 2 are polymorphs, and interestingly, 1 irreversibly transforms into 2 above 340 K because of a crystallographic phase transition which involves a drastic modification of the crystal packing. The relevant thermodynamic parameters associated with the spin transition of polymorph 2 have been estimated using the regular solution theory leading to DeltaH = 3.04 kJ mol(-1), DeltaS = 20 J K(-1) mol(-1), and Gamma = 0.95 kJ mol(-1).