Quercetin, a flavonoid found in many fruits and vegetables, belongs to an extensive class of polyphenolic compounds. Previous studies reported that quercetin inhibits the proliferation of various cancer cells and tumor growth in animal models. We investigated the growth inhibition and colony formation of quercetin on three bladder cancer cells (EJ, J82 and T24). The expression of tumor suppressor genes and oncogenes such as P53, Survivin, PTEN, as well as the methylation status of these genes was also evaluated. We observed that quercetin induced apoptosis in bladder cancer cells in a time- and dose-dependent manner. Quercetin (100 micromolars) significantly inhibited EJ, T24 and J82 cell growth accompanied by an increase in the G0/G1 phase. In all cell lines, quercetin decreased the expression of mutant P53 and Survivin proteins. However, there was no change in the level of PTEN protein. Moreover, the DNA methylation levels of the estrogen receptor (Er-beta), P16INK4a and RASSF1A were strongly decreased (from 35 to 70%) in the quercetin-treated group compared to the control. In conclusion, our study suggested that quercetin inhibits growth, colony formation and hypermethylation of bladder cancer cell lines. Quercetin-induced apoptosis might be associated with a decrease in mutant P53 and Survivin proteins.