Cell adhesion molecules at the synapse

Front Biosci. 2006 Sep 1:11:2400-19. doi: 10.2741/1978.

Abstract

Synapses are specialized intercellular junctions whose specificity and plasticity provide the structural and functional basis for the formation and maintenance of the complex neural network in the brain. The number, location, and type of synapses formed are well controlled, since synaptic circuits are formed in a highly reproducible way. This implies the existence of cellular and molecular properties that determine the connectivity of each neuron in the nervous system. Recent evidence has elucidated that these key features of the synapse are regulated by several families of cell-adhesion molecules (CAMs) enriched at synaptic junctions, including neuroligins, SynCAM, NCAM, L1-CAM, cadherins, protocadherins, and integrins. In this review we will discuss the various stages of synaptogenesis from the perspective of CAMs: Contact initiation, recruitment of presynaptic and postsynaptic proteins, synapse maturation/stabilization or elimination, and synaptic plasticity. We will also highlight some of the factors that regulate the function of these CAMs at the synapse, and discuss how dysfunction of these adhesive systems may contribute to several neurological disorders.

Publication types

  • Review

MeSH terms

  • Cell Adhesion Molecules / metabolism*
  • Humans
  • Mental Disorders / physiopathology
  • Morphogenesis
  • Nervous System / growth & development
  • Neuronal Plasticity
  • Nuclear Matrix-Associated Proteins / metabolism
  • Spine / embryology
  • Synapses / physiology*
  • Synaptic Transmission / physiology*

Substances

  • Cell Adhesion Molecules
  • Nuclear Matrix-Associated Proteins