We consider a host-parasitoid system with individuals moving on a square grid of patches. We study the effects of increasing movement frequency of hosts and parasitoids on the spatial dynamics of the system. We show that there exists a threshold value of movement frequency above which spatial synchrony occurs and the dynamics of the system can be described by an aggregated model governing the total population densities on the grid. Numerical simulations show that this threshold value is usually small. This allows using the aggregated model to make valid predictions about global host-parasitoid spatial dynamics.