GnRH improves the recovery rate and the in vitro developmental competence of oocytes obtained by transvaginal follicular aspiration from superstimulated heifers

Theriogenology. 1997 Jul 15;48(2):291-8. doi: 10.1016/s0093-691x(97)84076-9.

Abstract

In this study we assessed the effect of GnRH on the recovery rate, meiotic synchronization and in vitro developmental competence of oocytes recovered close to the expected time of ovulation. Twenty-three heifers were superstimulated with FSH, and luteolysis was induced by PGF(2alpha) injection 48 h after the start of treatment Twelve heifers received 200 microg GnRH at 34 h after PGF(2alpha) treatment, Blood samples were collected between 35 to 47 h after PGF(2alpha) administration to determine the time of the LH surge. Transvaginal follicular aspiration was performed at 60 h after PGF(2alpha), and the recovered oocytes were fertilized or fixed either immediately or after 24 h of maturation in vitro. GnRH-treated heifers showed an LH surge within 3 h after treatment, while only 4 of the 10 heifers in the control group exhibited an LH surge by 47 h after treatment with PGF(2alpha). The average number of large follicles (> 10 mm) was 21.3 +/- 2.3 and 19.3 +/- 2.4 for GnRH-treated and control heifers, respectively. The oocyte recovery rate was 87.7 and 63.1% (P < 0.05), respectively, and most of the cumulus-oocyte-complexes (COC) recovered from the 2 groups had an expanded cumulus (80.4 and 80.5%, respectively). Oocytes with an expanded cumulus from the GnRH group had completed meiotic maturation at higher rate than the controls (97 vs 20%;P < 0.05). In vitro development to the blastocyst stage of cumulus-expanded oocytes fertilized immediately after recovery was higher in GnRH-treated than in control heifers (60.3 vs 40.0%; P < 0.05). No difference was observed when oocytes with compact or expanded cumulus were matured in vitro for 24 h before fertilization. These results indicate that GnRH injections improve the oocyte recovery rate and that oocytes have a higher development competence than those obtained from non-GnRH-treated animals. We propose that this higher in vitro developmental competence may result from a more synchronous or further advanced meiotic maturation. However, due to the small number of oocytes in our study, we must emphasize that our findings on meiotic resumption are of preliminary nature.