Nanometer-scale holes have been fabricated on the surfaces of the semiconducting transition metal dichalcogenides (TMDCs) molybdenum ditelluride (MoTe2) and molybdenum disulfide (MoS2) by applying voltage pulses from the tip of a scanning tunneling microscope (STM) operating in ultrahigh vacuum (UHV). It was found that the tip geometry (tip shape and sharpness) influences the formation and structure of the atomic-scale nanostructures. Threshold voltage ranges for the surface modification of MoTe2 (3.0 +/- 0.3 V) and MoS2 (3.4 +/- 0.3 V) were determined. Negative sample voltage pulses applied to a p-type MoTe2 surface produced much larger and deeper nanometer-scale holes when compared with those produced by positive voltage pulses. The existence of threshold voltages and the pulse polarity dependence of nanostructure fabrication suggests that an electric field evaporation mechanism is applicable. Support for this mechanism was obtained by nanostructuring metallic TMDC NbSe2, where both the produced features and the threshold voltages (3.0 +/- 0.3 V) were similar for both positive and negative voltage pulses.