Increased Na(+)-H+ antiporter activity in apical membrane vesicles from mutant LLC-PK1 cells

Am J Physiol. 1991 Apr;260(4 Pt 1):C738-44. doi: 10.1152/ajpcell.1991.260.4.C738.

Abstract

In whole cell experiments, the PKE20 mutant of the renal epithelial cell line LLC-PK1 displays a severalfold elevation of Na(+)-H+ antiporter activity at the apical surface (J.G. Haggerty, N. Agarwal, R.F. Reilly, E. A. Adelberg, and C.W. Slayman. Proc. Natl. Acad. Sci. USA 85: 6797-6801, 1988). The present study was undertaken to explore the properties of the mutant at the membrane level. Apical membrane vesicles were prepared by the magnesium-aggregation technique, with a similar enrichment (ca. 10-fold) of the marker enzyme gamma-glutamyltranspeptidase in vesicles from parent and mutant cell lines. In both cases, 22Na influx was stimulated by an inside-acid pH gradient, inhibited by ethylisopropylamiloride (EIPA), and unaffected by valinomycin, indicating that it was mediated by Na(+)-H+ antiport. Quantitatively, PKE20 vesicles showed a 4.2-fold increase in the maximal velocity of Na(+)-H+ antiporter activity compared with the parent, with only minor increases in the activity of two other Na(+)-dependent transporters (14-56% for alpha-methylglucoside and L-glutamate). Dose-response curves for EIPA indicated that the increased Na(+)-H+ antiport activity in PKE20 vesicles was due to an increased activity of the relatively amiloride-resistant form of the Na(+)-H+ antiporter with little or no change in the amiloride-sensitive form. No differences in polypeptide composition of the two vesicle preparations could be detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Taken together, the results indicate that the mutation in PKE20 is expressed at the membrane level and is specific for the relatively amiloride-resistant Na(+)-H+ antiporter.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amiloride / analogs & derivatives
  • Amiloride / pharmacology
  • Animals
  • Carrier Proteins / metabolism*
  • Cell Fractionation
  • Cell Line
  • Cell Membrane / drug effects
  • Cell Membrane / metabolism*
  • Cell Membrane / ultrastructure
  • Clone Cells
  • Electrophoresis, Polyacrylamide Gel
  • Kinetics
  • Membrane Proteins / isolation & purification
  • Mutation*
  • Sodium / metabolism*
  • Sodium-Hydrogen Exchangers
  • Sodium-Potassium-Exchanging ATPase / metabolism
  • gamma-Glutamyltransferase / metabolism

Substances

  • Carrier Proteins
  • Membrane Proteins
  • Sodium-Hydrogen Exchangers
  • Amiloride
  • Sodium
  • gamma-Glutamyltransferase
  • Sodium-Potassium-Exchanging ATPase
  • ethylisopropylamiloride