Light and temperature cycles are the most important synchronizers of biological rhythms in nature. However, the relative importance of each, especially when they are not in phase, has been poorly studied. The aim of this study was to analyze the entrainment of daily locomotor activity to light and/or temperature cycles in zebrafish. Under two constant temperatures (20 degrees C and 26 degrees C) and 12:12 light-dark (LD) cycles, zebrafish were most active during the day (light) time and showed higher total activity at the warmer temperature, while diurnalism was higher at 20 degrees C than at 26 degrees C (87% and 77%, respectively). Under thermocycles (12:12 LD, 26:20 degrees C thermophase:chryophase or TC), zebrafish daily activity synchronized to the light phase, both when the thermophase and light phase were in phase (LD/TC) or in antiphase (LD/CT). Under constant dim light (3 lux), nearly all zebrafish synchronized to thermocycles (tau=24 h), although activity rhythms (60% to 67% of activity occurred during the thermophase) were not as marked as those observed under the LD cycle. Under constant dim light of 3 lux and constant temperature (22.5 degrees C), 4 of 6 groups of zebrafish previously entrained to thermocycles displayed free-running rhythms (tau=22.9 to 23.6 h). These results indicate that temperature cycles alone can also entrain zebrafish locomotor activity.