Host defence against pathogens requires the recognition of conserved microbial molecules, or 'pathogen-associated molecular patterns' (PAMPs), by their receptors termed 'pattern recognition receptors' (PRRs), represented most notably by toll-like receptors (TLRs) and C-type lectins. The 'non-classical' C-type lectins (these that lack the residues involved in calcium binding, required for carbohydrate binding) are traditionally thought of as being restricted to natural killer (NK) or T cells, playing important roles in immune surveillance. In recent years, however, a growing number of these receptors have been identified on myeloid cells, both of human and mouse origin. In contrast to their NK counterparts that primarily control cellular activation through recognition of major histocompatibility antigen (MHC) class I and related molecules, the myeloid-expressed receptors appear to have a far more diverse range of functions and ligands, including those of exogenous origin. Some of C-type lectin-like molecules possess activating/inhibitory signalling motifs that trigger downstream signalling events, suggesting the role for these receptors as positive/negative regulators of granulocyte and monocyte functions. With the exception of a few myeloid NK-like lectins, the natural ligands for most of these receptors remain unidentified, making it difficult to define their functions in normal physiological, inflammatory or pathological conditions. Importantly, in some cases, these novel C-type lectin-like lectins, encoded by genes from the same gene cluster, can act as receptor/ligand pairs, additionally contributing to the regulation of myeloid cell functions or their interaction with other (like NK) cell types. However, the relevance and importance of such interactions still needs to be assessed. Although few of the myeloid-expressed C-type lectins have been characterized in detail, we review here each of these receptors and highlight their prospective roles in innate and adaptive immunity.