Transplantation of allogeneic or genetically modified autologous hepatocytes may be an alternative to whole-liver transplantation for the treatment of hereditary metabolic liver diseases. Human hepatocytes have already been transplanted in patients, demonstrating the safety and feasibility of both approaches. Although a few cases of allogeneic transplantation have resulted in long-term engraftment and function, only a partial and transient correction of the disease was achieved. This may partly result from a lack of proliferation of transplanted cells. In rodents, transplanted hepatocytes do not proliferate in adult quiescent livers and repopulate recipient livers only when they display a proliferative advantage over resident hepatocytes. Most of these models are not transposable to humans, however. Our aim is to develop preclinical approaches to hepatocyte transplantation in nonhuman primates. We have defined a strategy that increases the engraftment efficiency of transplanted hepatocytes by inducing their proliferation together with that of resident hepatocytes. We have also immortalized simian fetal hepatic progenitor cells and shown that these cells do not proliferate in situ after transplantation into the livers of immunodeficient mice. By contrast early human hepatoblasts repopulate mouse livers more efficiently. However, if we consider the number of cells to be transplanted (one to several billion), the means of expanding and differentiating stem or progenitor cells other than hepatocytes will have to be determined prior to envisaging treating patients.