A citric acid (CA)-assisted hydrothermal process was used to prepare Fe2O3 hexagonal nanoplates with a lateral size of about 100 nm. In addition, the hexagonal nanoplates of Co(OH)2, MnCO3, and Ni(OH)2 were also synthesized by this route, indicative of the universality of the solution route presented herein. The morphologies and structures of the synthesized platelike nanostructures have been characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Furthermore, the mechanism for the formation of the platelike nanostructures has been preliminarily discussed. It is believed that the capping molecule of CA, which inhibits crystal growth along the <001> direction due to its chelating effect, plays a critical role in the hydrothermal formation of the nanoplates.