Chromosomal substitution strains afford the opportunity to discover regions of the rat genome that contain genes related to cardiovascular traits with the long-range goal of linking these genes to physiological function. PhysGen (Programs for Genomic Applications) created a consomic panel of rats derived from the introgression of a single chromosome (> or =95% of the BN chromosome, one at a time) of the Brown Norway (BN/NHsdMcwi) rat onto the homogeneous genetic background of the Dahl salt-sensitive rat (SS/JrHsdMcwi). For 3 wk before the experiment, the rats were maintained on a low-salt diet (0.4% NaCl). The dose response of aortic rings from each strain of rat to phenylephrine, acetylcholine, sodium nitroprusside, and three different levels of tissue bath hypoxia (10, 5, and 0% O2) was measured and compared with the parental SS rat. To maximize the possibility that differences among the strains would become apparent, each strain of rat including the parental SS and BN was also studied after being maintained on a high-salt diet (4.0% NaCl) for 3 wk. If the response of the aortic ring from a consomic strain to these vasoactive substances was different from that of the SS parental strain, it was concluded that the introgressed chromosome contained a gene or genes that contributed to that difference. Because the BN chromosome is removed from its native background and the SS rat loses a native chromosome, it is also necessary to consider the contribution of changes in gene-to-gene interaction.