Nanocomposites of zinc sulfide (ZnS) and montmorillonite (MMT) were prepared via a hydrothermal route. In this method, the MMT treated with hexadecyltrimethyl ammonium bromide (HTAB) aqueous solution was dispersed in the aqueous solution of thiourea and Zn(OOCHCH(3))(2)2H(2)O, and heated at 170 degrees C for about 4 h, resulting in ZnS-MMT composites. The as-prepared nanocomposites were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen sorption analysis. It was demonstrated that the interlayer space of MMT was enlarged from 0.98 to 3.77 nm after the treatment with HTAB aqueous solution, and the ZnS nanoparticles were deposited on the layers of MMT. Nitrogen sorption analysis demonstrated that the specific surface area of the samples decreased from 39.2 m(2)/g of the pristine MMT to 5.9 m(2)/g of the final ZnS-MMT composites. The resulting ZnS-MMT nanocomposites (50.0 mg) could degrade eosin B completely in aqueous solution (75 ml, 3.2x10(-5) M) within 20 min under UV irradiation.