A new method for the selection of Pichia stipitis and Hansenula polymorpha yeast mutants with altered capability to ferment xylose to ethanol was developed. The method is based on the ability of P. stipitis and H. polymorpha colonies to grow and produce ethanol on agar plates with xylose as the sole carbon and energy source. Secreted ethanol, in contrast to xylose, supports growth of cells of the indicator xylose-negative strains (the wild-type strain of Saccharomyces cerevisiae or Deltaxyl1 mutant of H. polymorpha) mixed with agar medium. The size of the tester culture-growth zone around xylose-grown colonies appeared to be dependent on the amount of secreted ethanol. Mutants with altered (decreased or elevated) ethanol production in xylose medium have been isolated using this method. The mutants exhibited pleiotropic alterations in enzymatic activities of the intermediary xylose metabolism.