Our hypothesis was that cross-linked, ultrahigh-molecular weight polyethylene (UHMWPE) stabilized with vitamin E (alpha-tocopherol) would be wear-resistant and fatigue-resistant. Acetabular liners were radiation cross-linked, doped with vitamin E, and gamma-sterilized. Hip simulator wear rate of vitamin E-stabilized UHMWPE was approximately 1 and 6 mg/million-cycles in clean serum and in serum with third-body particles, respectively, a 4-fold to 10-fold decrease from that of conventional UHMWPE. The ultimate strength, yield strength, elongation at break, and fatigue resistance of vitamin E-stabilized UHMWPE were significantly higher than that of 100 kGy-irradiated and melted UHMWPE, and were unaffected by accelerated aging. Rim impingement testing with 3.7-mm-thick acetabular liners up to 2 million-cycles showed no significant damage of the cross-linked liners compared with conventional, gamma-sterilized in inert UHMWPE, vitamin E-stabilized liners. The data indicate good in vitro wear properties and improved mechanical and fatigue properties for vitamin E-stabilized, cross-linked UHMWPE.