The work presented here verifies the hypothesis that RS-alpha-lipoic acid may exert its cholinoprotective and cholinotrophic activities through the maintenance of appropriate levels of acetyl-CoA in mitochondrial and cytoplasmic compartments of cholinergic neurons. Sodium nitroprusside (SNP) and amyloid-beta decreased pyruvate dehydrogenase, choline acetyltransferase activities, acetyl-CoA content in mitochondria and cytoplasm, as well as increased fraction of non-viable, trypan blue positive cells in cultured differentiated cholinergic SN56 neuroblastoma cells. Lipoic acid totally reversed toxin-evoked suppression of choline acetyltrasferase and pyruvate dehydrogenase activities, as well as mitochondrial and cytoplasmic acetyl-CoA levels, and partially attenuated increase of cell mortality. Significant negative correlations were found between enzyme activities, acetyl-CoA levels and cell mortality in different neurotoxic and neuroprotective conditions employed here. The level of cytoplamic acetyl-CoA correlated with mitochondrial acetyl-CoA, whereas choline acetyltransferase activity followed shifts in cytoplasmic acetyl-CoA. Thus, we conclude that, in cholinergic neurons, particular elements of the pyruvate-acetyl-CoA-acetylcholine pathway form a functional unit responding uniformly to nerotoxic and neuroprotectory conditions.