Polarization and movement of keratocytes: a multiscale modelling approach

Bull Math Biol. 2006 Jul;68(5):1169-211. doi: 10.1007/s11538-006-9131-7. Epub 2006 Jun 23.

Abstract

Eukariotic cell motility is a complex phenomenon, in which the cytoskeleton and its major constituent, actin, play an essential role. Actin forms polymers of long, stiff filaments that are cross-linked into an anisotropic network inside a thin sheet-like cellular protrusion, the lamellipod. At the leading edge of this structure, polymerization of actin filaments creates the force that pushes out the membrane and leads to translocation of a motile cell. Dynamics of the actin network account for changes in cell shape, crawling motion and turning of the cell in response to external cues. Regulating the dynamics of the cytoskeleton, and playing a central role in signal transduction in the cell, are Cdc42, Rac and Rho (GTPases of the rho family, collectively known as the small G-proteins) and the actin nucleating complex, Arp2/3. In this paper, we use a multiscale modelling approach in a 2D model of a motile cell. We describe the mutual interactions of the small G-proteins, and their effects on capping and side-branching of actin filaments. We incorporate the pushing exerted by oriented actin filament ends on the cell edge, and a Rho-dependent contraction force. Combining these biochemical and mechanical aspects, we investigate the dynamics of a model epidermal fish keratocyte through in silico experiments. Our model gives insight into how, in response to some cue, a cell can polarize, form a leading edge, and move; concomitantly it explains how a keratocyte cell can maintain its shape and polarity, even after removal of the initial stimulus, and how it can change direction quickly in response to changes in its environment. We show that establishment of polarity stems from interactions of Cdc42, Rac and Rho, while maintenance and robustness of polarity is due to the rapid cytosolic diffusion of the inactive (GDI-bound) forms of the small G-proteins. Our model produces a cell shape that closely resembles the keratocytes and correct speeds for biologically reasonable parameter values. Movies of the simulations can be obtained from http://theory.bio.uu.nl/stan/keratocyte.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Actins / physiology
  • Animals
  • Cell Movement / physiology
  • Cell Polarity / physiology
  • Epithelial Cells / cytology
  • Epithelial Cells / physiology*
  • Fishes
  • GTP-Binding Proteins / physiology
  • Mathematics
  • Models, Biological*

Substances

  • Actins
  • GTP-Binding Proteins