The importance of HOXA genes in T-cell acute lymphoblastic leukemia (T-ALL) has recently been recognized. We report a novel chromosomal translocation in a T-ALL patient that maps upstream of the HOXA13 gene and downstream of the BCL11B/CTIP2 locus. Analysis of HOXA gene transcription demonstrated massive expression of HOXA13, whereas the other HOXA genes were unaffected. A genomic rearrangement of the HOXA locus associated with exclusive expression of HOXA13 was observed in a second patient. This situation resembles chromosomal translocations activating genes of the TLX/HOX11 family in T-ALLs. To compare the leukemogenic properties of HOXA13 to that of TLX proteins, cohorts of lethally irradiated mice were transplanted with bone marrow transduced with a retroviral vector expressing TLX3 or HOXA13. Cells transduced with TLX3 or HOXA13 could not be detected in the peripheral blood of mice post-transplantation and none of the mice developed malignancies. Cotransduction of the HOX cofactor MEIS1 with TLX3 or HOXA13 did not alter this outcome. However, in a myeloid clonogenic assay HOXA13 and TLX3 extended the proliferation of progenitors similarly to what was observed for TLX1. Altogether, our results strongly suggest the absolute requirement for cooperative events in association with homeobox gene up-regulation to induce T-cell leukemogenesis.
(c) 2006 Wiley-Liss, Inc.