Nowadays, centrifugal partition chromatography (CPC) separations can be routinely achieved at the laboratory scale. The solvent system selection has been made easy, as generic sets of solvent systems are described in publications and books. This approach, however, generally reduces the scope of optimization strategies for two important parameters: selectivity and sample solubility. This can be very limiting for the preparative separation of structurally similar compounds. Multiple dual-mode (MDM) CPC has been developed to provide an easy-to-use alternative technique to circumvent this problem. A MDM separation consists of a succession of dual-mode runs (i.e. multiple inversion of stationary and mobile phase) that can only be achieved because both chromatographic phases are liquids. This original elution mode is thus a semi-continuous process with a classical sample injection and which only requires a single CPC column. Underlying mechanisms of MDM were studied using a model mixture of acenaphthylene and naphthalene. A mixture of two synthetic pairs of diastereomers was then successfully submitted to MDM CPC, in the framework of the synthesis of biologically active compounds.