The alpha-adrenergic agonist, phenylephrine (1.6 microM), caused a threefold stimulation of glutathione (GSH) transport from the lumen into the vasculature in isolated, vascularly perfused rat small intestine. Stimulation of GSH transport by phenylephrine was blocked by the alpha-adrenergic antagonists, prazosin or phentolamine. Norepinephrine and epinephrine (both alpha and beta agonists) also stimulated GSH absorption but not to the same extent as phenylephrine. Isoproterenol, a strict beta-adrenergic agonist, had no effect on the rate of GSH absorption. Under physiological luminal GSH concentrations, phenylephrine stimulated GSH efflux from the lumen, accumulation in the intestinal mucosa, and transport into the mesenteric vasculature. Phenylephrine did not stimulate the transport of polyethylene glycol, a high molecular weight molecule, and stimulated uptake of cysteine and glycine by 30%. This suggests that the effect of phenylephrine on GSH transport is not due to enhanced bulk flow through paracellular pathways. Studies with isolated small intestinal epithelial cells showed that phenylephrine also stimulated the release of GSH from the cells. Oral administration of phenylephrine with GSH caused a two- to fivefold transient increase in plasma GSH concentrations in rats. Phenylephrine alone or with the amino acid constituents of GSH caused no increase in plasma GSH concentration. Thus, absorption of dietary GSH is under hormonal regulation. The physiological importance of this regulation is not known, although such regulation may function to control utilization of dietary GSH for detoxication and may have therapeutic benefits for individuals with deficient GSH or increased risk of oxidative or chemically induced injury.