Antiangiogenic molecules derived from prolactin (PRL) are not a single entity, but rather a family of peptides with different molecular masses, all containing the N-terminal region of PRL. Cleavage of PRL by cathepsin-D or by matrix metalloproteases generates N-terminal fragments that act on endothelial cells to suppress vasodilation and angiogenesis and promote vascular regression. N-terminal PRL fragments have been identified in cartilage and retina, where angiogenesis is highly restricted. In vivo experiments demonstrate that these PRL fragments exert a tonic and essential suppression of retinal blood vessel growth and dilation. Similar PRL fragments have been detected in the pituitary gland, a highly vascularized organ where the control of vascular growth may differ from that in tissues where angiogenesis is highly restricted. We have previously proposed the name vasoinhibins to describe the collection of N-terminal PRL fragments having blood vessel-blocking activity, and here we discuss their promise as factors to control vascular function in health and disease.