The SZ-F strain of Plutella xylostella (L.) (Lepidoptera: Plutellidae) was derived from a field-collected strain (SZ) by 20 generations of continuous selection with fipronil. The selection resulted in 300-fold increase in resistance to fipronil, and 3.5- and 6.5-fold cross-resistance to dieldrin and endosulfan, respectively, in the SZ-F strain compared with the unselected SZ strain. Analysis of detoxification enzyme activities and bioassay with synergists indicated that metabolic mechanisms are not important to fipronil resistance of the SZ-F strain and that the fipronil resistance is most likely attributed to target site insensitivity. The genomic DNA fragments flanking the second membrane-spanning region of Rdl gamma-aminobutyric acid (GABA) receptor gene from P. xylostella, PxRdl, were cloned and sequenced. A single allele of the PxRdl gene (encoding A302 or allele PxRdl-Ala) was found in both the Roth (susceptible) and SZ strains. In addition to the wild-type allele PxRdl-Ala, the resistant SZ-F strain carried a mutant PxRdl allele with the conserved amino acid replacement A302(GGC)--> S302(TCC) (allele PxRdl-Ser). The mutant PxRdl-Ser allele frequency in the SZ-F strain was 30%. After treatment of 20 mg/l fipronil on the SZ-F strain, the PxRdl-Ser allele frequency in the survivors increased to 57%. High frequency of the PxRdl-Ala allele remaining in the resistant SZ-F strain suggested that the A302S mutation in the PxRdl gene is partially associated with fipronil resistance and that other mutation(s) in the PxRdl gene or other Rdl-like subunit(s) may contribute to fipronil resistance.