Endogenous ADP-ribosylation in brain: initial characterization of substrate proteins

J Neurochem. 1991 Dec;57(6):2124-32. doi: 10.1111/j.1471-4159.1991.tb06431.x.

Abstract

Cholera and pertussis toxin-mediated ADP-ribosylation has been used extensively to study regulation of guanine nucleotide binding proteins (G proteins) in the nervous system, but much less is known about possible endogenous ADP-ribosylation of G proteins in brain. The present study demonstrates endogenous ADP-ribosylation, in the absence of cholera and pertussis toxins, of four predominate proteins in homogenates of rat cerebral cortex. These proteins showed apparent molecular masses of 20, 42, 45, and 50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 42- and 45-kDa proteins comigrated precisely with the major cholera toxin-labeled bands. Furthermore, the endogenous ADP-ribosylated and cholera toxin-ADP-ribosylated bands yielded identical 32P-labeled peptide fragments by one-dimensional peptide mapping, indicating that they are probably the same proteins, presumably the alpha-subunits of Gs. In contrast, peptide maps of the 50-kDa protein, which migrated close to a 48-kDa cholera toxin-labeled band, demonstrated that this protein is distinct from the toxin-labeled band and from Gs alpha. Levels of endogenous ADP-ribosylation activity showed regional heterogeneity in brain, with a nearly threefold variation observed among the brain regions examined. Chronic administration (7 days) of corticosterone significantly increased overall levels of endogenous ADP-ribosylation, indicating that components of this system may be under hormonal control in vivo. Attempts to identify neurotransmitters or second messenger systems that regulate endogenous ADP-ribosylation activity in brain have so far been unsuccessful with one exception.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Diphosphate Ribose / metabolism*
  • Animals
  • Brain / enzymology*
  • Glucocorticoids / pharmacology
  • Molecular Weight
  • Nerve Tissue Proteins / chemistry
  • Nerve Tissue Proteins / metabolism*
  • Neurotransmitter Agents / physiology
  • Rats
  • Second Messenger Systems / physiology
  • Tissue Distribution

Substances

  • Glucocorticoids
  • Nerve Tissue Proteins
  • Neurotransmitter Agents
  • Adenosine Diphosphate Ribose