HAb18G/CD147 is a highly glycosylated transmembrane protein belonging to the immunoglobulin superfamily. Our previous studies have demonstrated that overexpressing HAb18G/CD147 enhances the metastatic potentials of human hepatoma cells. In the present study, to investigate the glycosylation characteristic of HAb18G/CD147 in human hepatoma cells, HAb18G/CD147 was first purified from human FHCC-98 hepatoma cells by immunoaffinity chromatography, and then introduced into human fibroblasts culture system for matrix metalloproteinases induction. As a result, the elevated levels of matrix metalloproteinases secreted by fibroblasts were detected by gelatin zymography. The lysates of human hepatoma FHCC-98 cell revealed two major forms of HAb18G/CD147 (43-66 and 35 kDa) by western blot assay. To elucidate whether the variation of molecule size were caused by different glycosylation, two different approaches were employed to accomplish this goal: deglycosylation with N-glycosylation inhibitor tunicamycin or endoglycosidases. A single deglycosylated core protein with molecular weight approximately 27 kDa was obtained from both methods. Furthermore, the results of endoglycosidases treatment also showed that two forms of HAb18G/CD147 contain different types of oligosaccharide chains, thus sensitive to different endoglycosidase. In conclusion, the present study demonstrated that purified native HAb18G/CD147 has the bioactivity of stimulating human fibroblasts to produce elevated levels of matrix metalloproteinases, and that the two different forms of HAb18G/CD147 are derived from the single core protein but differ in their degree and types of glycosylation.