To develop a whole-cell oxidoreductase system without the practical limitation of substrate/product transport, easy preparation, stability of enzymes, and low expression levels, we here report the development of a whole cell biocatalyst displaying rat NADPH-cytochrome P450 oxidoreductase (CPR, 77-kDa) on the surface of Escherichia coli by using ice-nucleation protein from Pseudomonas syringae. Surface localization and functionality of the CPR were verified by flow cytometry, electron microscopy, and measurements of enzyme activities. The results of this study comprise the first report of microbial cell-surface display of diflavin-containing mammalian enzymes. This system will allow us to select and develop oxidoreductases, containing bulky and complex prosthetic groups of FAD and FMN, into practically useful whole-cell biocatalysts for broad biological and biotechnological applications including the selective synthesis of new chemicals and pharmaceuticals, bioconversion, bioremediation, and bio-chip development.