X-ray crystal structure of leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase. Evidence for a convergence of metal ion-independent glycosyltransferase mechanism

J Biol Chem. 2006 Sep 8;281(36):26693-701. doi: 10.1074/jbc.M603534200. Epub 2006 Jul 7.

Abstract

Leukocyte type core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT-L) is a key enzyme in the biosynthesis of branched O-glycans. It is an inverting, metal ion-independent family 14 glycosyltransferase that catalyzes the formation of the core 2 O-glycan (Galbeta1-3[GlcNAcbeta1-6]GalNAc-O-Ser/Thr) from its donor and acceptor substrates, UDP-GlcNAc and the core 1 O-glycan (Galbeta1-3GalNAc-O-Ser/Thr), respectively. Reported here are the x-ray crystal structures of murine C2GnT-L in the absence and presence of the acceptor substrate Galbeta1-3GalNAc at 2.0 and 2.7A resolution, respectively. C2GnT-L was found to possess the GT-A fold; however, it lacks the characteristic metal ion binding DXD motif. The Galbeta1-3GalNAc complex defines the determinants of acceptor substrate binding and shows that Glu-320 corresponds to the structurally conserved catalytic base found in other inverting GT-A fold glycosyltransferases. Comparison of the C2GnT-L structure with that of other GT-A fold glycosyltransferases further suggests that Arg-378 and Lys-401 serve to electrostatically stabilize the nucleoside diphosphate leaving group, a role normally played by metal ion in GT-A structures. The use of basic amino acid side chains in this way is strikingly similar to that seen in a number of metal ion-independent GT-B fold glycosyltransferases and suggests a convergence of catalytic mechanism shared by both GT-A and GT-B fold glycosyltransferases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Crystallography, X-Ray
  • Ions / chemistry*
  • Metals / chemistry*
  • Mice
  • Models, Molecular
  • Molecular Sequence Data
  • N-Acetylglucosaminyltransferases / chemistry*
  • N-Acetylglucosaminyltransferases / genetics
  • N-Acetylglucosaminyltransferases / metabolism
  • Oligosaccharides / chemistry
  • Oligosaccharides / metabolism
  • Polysaccharides / metabolism
  • Protein Structure, Tertiary*
  • Recombinant Fusion Proteins / chemistry
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Sequence Alignment
  • Substrate Specificity
  • Uridine Diphosphate Glucuronic Acid / metabolism

Substances

  • Ions
  • Metals
  • Oligosaccharides
  • Polysaccharides
  • Recombinant Fusion Proteins
  • Uridine Diphosphate Glucuronic Acid
  • N-Acetylglucosaminyltransferases
  • beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-acetylglucosaminyl transferase

Associated data

  • PDB/2GAK
  • PDB/2GAM