V+(N2)n clusters are generated in a pulsed nozzle laser vaporization source. Clusters in the size range of n = 3-7 are mass selected and investigated via infrared photodissociation spectroscopy in the N-N stretch region. The IR forbidden N-N stretch of free nitrogen becomes strongly IR active when the molecule is bound to the metal ion. Photodissociation proceeds through the elimination of intact N2 molecules for all cluster sizes, and the fragmentation patterns reveal the coordination number of V+ to be six. The dissociation process is enhanced on vibrational resonances and the IR spectrum is obtained by monitoring the fragmentation yield as a function of wavelength. Vibrational bands are red-shifted with respect to the free nitrogen N-N stretch, in the same way seen for the C-O stretch in transition metal carbonyls. Comparisons between the measured IR spectra and the predictions of density functional theory provide new insight into the structure and bonding of these metal ion complexes.