Background and aim: The transcription factor and immediate-early gene Egr-1 is widely viewed as a key upstream activator in a variety of settings within cardiovascular pathobiology. The role that Egr-1 plays in myocardial ischemia-reperfusion (IR) injury is unknown. We hypothesized that Egr-1 upregulation is of pathophysiologic importance in myocardial IR injury.
Methods and resources: First, abrogation of Egr-1 mRNA upregulation using Egr-1 targeting DNAzymes in a rat cardiomyocyte in vitro model was demonstrated. Egr-1 mRNA and protein upregulation following myocardial IR in rats were then selectively suppressed by locally delivered DNAzyme. Furthermore, myocardial neutrophil infiltration, intercellular adhesion molecule 1 mRNA and protein expression, and myocardial infarct size were all attenuated in DNAzyme-treated animals.
Conclusions: These data support the hypothesis that Egr-1 is a key contributor to myocardial IR injury, and that Egr-1 targeting strategies have therapeutic potential in this context.