The inflammatory reaction plays an important role in the pathogenesis of the neurodegenerative disorder including Alzheimer's disease (AD). Sesame lignan compounds such as sesaminol glucosides (SG) exhibit a range of pharmacological activities including anti-oxidative and anti-inflammatory action. In this study, we tried to elucidate possible effects of SG on lipopolysaccharide (LPS)-induced inflammatory reaction and its underlying mechanism in cultured astrocytes. SG (10-100 microg/ml) inhibited LPS-induced generation of nitric oxide (NO) and reactive oxygen species (ROS), as well as inhibited LPS-induced cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) expression dose-dependently. This inhibitory effect of SG on NO and ROS generation was enforced by addition of glutathione (GSH) in culture. In addition, SG prevented LPS-induced DNA binding and transcriptional activity of nuclear factor KappaB (NF)-kappaB. Consistent with the inhibitory effect on NF-kappaB activity, SG inhibits phosphorylation and degradation of inhibitory KappaB (IkappaB), thereby translocation of p50 of NF-kappaB. These data show that SG has an anti-inflammatory effect through inhibition of NF-kappaB, and may be a useful agent for prevention of inflammatory disease like AD.