Erythropoietin (Epo) is used commonly to treat cancer and/or therapy-related anemia. Until recently, Epo was considered to be a specific stimulator of erythropoiesis, acting via its receptor, EpoR. It becomes clear, however, that EpoR is expressed in a variety of cell types other than hematopoietic cells, and that Epo is a potent cytoprotective cytokine increasing cell survival under hypoxic conditions. Epo and EpoR are also expressed in various malignant tumors, and EpoR expression shows association with tumor invasion and progression. Recently, a functional Epo autocrine signaling mechanism was also detected in human melanoma cells. In this study, we examined the hypothesis that Epo activates the Akt signaling pathway in human melanoma cells and thus promotes the survival of tumor cells. The Akt signaling pathway in response to Epo was examined in melanoma. Similar to Epo, the expression of EpoR was up-regulated in response to hypoxia and Epo stimulation in melanoma cells. Melanoma cells constitutively expressed Akt with variable expression of mammalian target of rapamycin, and Epo dose-dependently induced their activity. Epo increased Akt kinase activity, which was abrogated by co-treatment with LY294002, a specific blocker of phosphoinositide 3-kinase. LY294002 also inhibited the cytoprotective effects of Epo in melanoma cells under both normoxic and hypoxic conditions. Our results suggest that Epo promotes melanoma cell survival by activating an Akt-dependent signaling pathway.