The GABA receptor (GABABR) is a class C G protein-coupled receptor (GPCR) that functions as an obligate heterodimer, composed of two heptahelical subunits, GABABR subunit 1 (R1) and GABABR subunit 2 (R2). In this study, we generated and pharmacologically characterized constitutively active GABABR mutants as novel tools to explore the molecular mechanisms underlying receptor function. A single amino acid substitution, T290K, in the R1 agonist binding domain results in ligand-independent signaling when this mutant subunit is coexpressed with wild-type R2. Introduction of a Y690V mutation in the putative G protein-coupling domain of R2 is sufficient to confer moderate constitutive activity when this subunit is expressed alone. Activity of the Y690V mutant can be markedly enhanced with coexpression of wild-type R1. Coexpression of both mutant subunits (R1-T290K and R2-Y690K) leads to a further increase in basal signaling. Potencies of the full agonists R-(+)-beta-(aminomethyl)-4-chlorobenzenepropanoic acid hydrochloride (baclofen) and GABA are increased at the constitutively active versus the corresponding wild-type receptors. The mutant GABABR variants provided a sensitive probe enabling detection of inverse or partial agonist activity of molecules previously considered neutral antagonists. Our studies using constitutively active isoforms provide independent support for a model of GABABR function that takes into account 1) ligand binding by R1, 2) signal transduction by R2, and 3) modulation of R2-induced function by R1. Furthermore, we demonstrate that certain hallmark features of constitutive activity as originally established with class A GPCRs (e.g., enhanced agonist potency and affinity), are more generally applicable, as suggested by our finding with a class C heterodimeric receptor.