Effect of von Willebrand factor on the pharmacokinetics of recombinant human platelet glycoprotein Ibalpha-immunoglobulin G1 chimeric proteins

Pharm Res. 2006 Aug;23(8):1743-9. doi: 10.1007/s11095-006-9018-1.

Abstract

Purpose: Recombinant human platelet glycoprotein Ibalpha-immunoglobulin G1 chimeric proteins (GPIbalpha-Ig) have varying levels of anti-thrombotic activities based on their ability to compete for platelet mediated adhesion to von Willebrand Factor (vWF). Valine substituted GPIbalpha-Ig chimeras, at certain position, increase the binding affinity to vWF over its "wild-type" GPIbalpha-Ig analog. The purpose of this study was to determine the pharmacokinetics of two valine substituted GPIbalpha-Ig chimeras, GPIbalpha-Ig/1V (valine substitution at 239 position) and GPIbalpha-Ig/2V (double valine substitution at 233 and 239 position), in mice, rats and dogs.

Methods: Head-to-head comparisons of pharmacokinetics of GPIbalpha-Ig/1V and GPIbalpha-Ig/2V were investigated in rats and dogs after intravenous administration. Since vWF precipitates in the serum but not in plasma preparation, the concentration-time profiles of GPIbalpha-Ig/2V in rats were examined from the same blood samples for determination of matrix effect. The disposition of GPIbalpha-Ig/2V was also compared in vWF-deficient versus wild-type mice.

Results: For GPIbalpha-Ig/2V, the serum clearances were 2.62+/-0.27 ml/hr/kg in rats and 1.97+/-0.24 ml/hr/kg in dogs. The serum clearances of less potent GPIbalpha-Ig/1V were 1.08+/-0.08 and 0.97+/-0.19 ml/hr/kg in rats and dogs, respectively. In addition, the serum clearance of GPlbalpha-Ig/2V of 1.53 ml/hr/kg in vWF-deficient mice was lower than that in wild-type mice of 2.79 ml/hr/kg.

Conclusion: The difference in disposition for valine substituted forms of GPIbalpha-Ig in laboratory animals are likely affected by their enhanced binding affinity for circulating vWF.

MeSH terms

  • Amino Acid Substitution
  • Animals
  • Dogs
  • Enzyme-Linked Immunosorbent Assay
  • Female
  • Humans
  • Injections, Intravenous
  • Iodine Radioisotopes
  • Male
  • Mice
  • Mice, Knockout
  • Mutant Chimeric Proteins / pharmacokinetics
  • Platelet Glycoprotein GPIb-IX Complex / pharmacokinetics*
  • Protein Binding
  • Rats
  • Rats, Sprague-Dawley
  • Recombinant Proteins / pharmacokinetics
  • Valine / physiology
  • von Willebrand Factor / genetics
  • von Willebrand Factor / physiology*

Substances

  • Iodine Radioisotopes
  • Mutant Chimeric Proteins
  • Platelet Glycoprotein GPIb-IX Complex
  • Recombinant Proteins
  • von Willebrand Factor
  • Valine