We report a route to the fabrication of unique flowerlike polymer superstructures with uniform petals at the nanoscale. In this method, polymer/zeolite composite is first prepared by loading corresponding monomer and initiator into the channels of the host zeolite with the aid of supercritical (SC) CO2, followed by thermal polymerization of monomers in the channels of the zeolite. The resultant polymer/zeolite composite is then treated with HF aqueous solution to allow the self-aggregation of the polymer and the inorganic components to form the polymeric layers and inorganic layers. Unique microscale flowerlike polymer superstructures are obtained after further treatment with HF aqueous solution. Different techniques, such as scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry (TG), have been used to characterize the microflowers.