Objective: To develop and set up a new culture system, which can apply pressure to cultured cells with open cycling air. The effects of this new system on the pH value, HCO(3)(-) concentration, O(2) pressure (pO(2)), CO2 pressure (pCO(2)) and the proliferation of retinal pigment epithelium (RPE) were tested to evaluate its efficiency in the study of glaucoma.
Methods: In the open cycling air pressure control culture system, the pressure inside the culture flasks was controlled by increase or decrease of the perfuse airflow. The influence of different culture systems (normal pressure culture system, open cycling air pressure control system and occlusive pressure control system) on the pH value, HCO(3)(-) concentration, pO(2), pCO(2) and proliferation of RPE were tested. The data were analyzed with SPSS software.
Results: The open cycling air pressure control culture system worked effectively, the pressure inside the culture flask can be controlled from 0 to 100 mm Hg. The difference of pH value, HCO(3)(-) concentration, pO(2), and pCO(2) of culture medium and the proliferation of RPE between normal pressure culture system and open cycling air pressure control system were not significant (P = 0.927, 0.887, 0.818, 0.770, 0.719, respectively). There was significant difference in these data between normal pressure culture system and occlusive pressure control system (P = 0.001, 0.000, 0.000, 0.000, 0.000, respectively).
Conclusions: A new designed standard culture system applying pressure to cells with open cycling air was effective at pressure controlling and pH value, HCO(3)(-) concentration, pO(2) and pCO(2) controlling. This system may act as an ideal model in the experimental study of glaucoma.