Dynamic texture spreading is a filling-in phenomenon where a colored pattern perceptually spreads onto an area confined by virtual contours in a multi-aperture motion display. The spreading effect is qualitatively similar to static texture spreading but widely surpasses it in strength, making it particularly suited for quantitative studies of visual interpolation processes. We first carried out two experiments to establish with objective tasks that texture spreading is a genuine representation of surface qualities and thus goes beyond mere contour interpolation. Two subsequent experiments serve to relate the phenomenon to ongoing discussions about potentially responsible mechanisms for spatiotemporal integration. With a phenomenological method, we examined to what extent simple sensory persistence might be causally involved in the effect under consideration. Most of our findings are consistent with the idea of sensory persistence, and indicate that information fragments are integrated over a time window of about 100 to 180 ms to form a complete surface representation.