trans-Resveratrol (t-RES) is one of the most relevant and extensively investigated stilbenes with a broad spectrum of biological activities. In contrast to the detailed knowledge of t-RES activities in biological systems, much less is known about the effects of higher hydroxylated stilbenes. Therefore, the aim of this study was to evaluate the protective effects (antioxidant activities) of t-RES and two analogues: the natural metabolite piceatannol (PCA) and the synthesized 3,3',4,4',5,5'-hexahydroxy-trans-stilbene (HHS) against H2O2-induced DNA damage in leukemic L1210, K562 and HL-60 cells using single-cell gel electrophoresis (SCGE). After 24 h pre-treatment of cells all compounds investigated significantly inhibited the incidence of DNA single strand breaks induced by H2O2. The protective effects of PCA and HHS in L1210 cells and of HHS in HL-60 cells were significantly higher compared to the activity of t-RES (+P < 0.05). In K562 cells the differences of the antioxidant activities of PCA and HHS, and of PCA in HL-60 cells were of much higher significance when compared to t-RES (++P < 0.01). In conclusion, we can prove that all stilbenes investigated, t-RES, PCA, and HHS, manifested potent antioxidant effects on three leukemic cell lines and the presence of ortho-dihydroxy structures enhanced the protective effect against DNA damage caused by .OH radicals.