An increasing number of oncolytic viruses have been developed and studied for cancer therapy. In response to needs for non-invasive monitoring and imaging of oncolytic virotherapy, several different approaches, including a positron emission tomography-based method, a method using secreted marker peptides, and optical imaging-based methods, have been reported. Among these modalities, we utilized the luciferase-based bioluminescent assay/imaging systems to determine the kinetics and dynamics of a productive viral infection. The replication cycle of herpes simplex virus type 1 (HSV-1) is punctuated by a temporal cascade of three classes of viral genes: immediate-early (IE), early (E) and late (L) genes. U(L)39- and gamma(1)34.5-deleted, replication-conditional HSV-1 mutants that express firefly luciferase under the control of the IE4/5 or strict-late gC promoters were generated. These oncolytic viruses were examined in cultured cells and a mouse tumor model. IE promoter- and strict-late promoter-mediated luciferase expression was confirmed to indicate viral infection and replication, respectively. Incorporation of a strict-late promoter-driven luciferase cassette into oncolytic HSV-1 vectors would be useful for assessing tumor oncolysis in preclinical tumor treatment studies.