Hypoxia can induce lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) in primary effusion lymphoma (PEL) cells. However, the molecular mechanism of lytic reactivation of KSHV by hypoxia remains unclear. Here we show that the latency-associated nuclear antigen (LANA), which plays a crucial role in modulating viral and cellular gene expression, directly associated with a low oxygen responder, hypoxia-inducible factor-1 alpha (HIF-1 alpha). LANA enhanced not only the transcriptional activities of HIF-1 alpha but also its mRNA level. Coimmunoprecipitation and immunofluorescence studies documented a physical interaction between LANA and HIF-1 alpha in transiently transfected 293T cells as well as in PEL cell lines during hypoxia. Through sequence analysis, several putative hypoxia response elements (HRE-1 to -6) were identified in the essential lytic gene Rta promoter. Reporter assays showed that HRE-2 (-1130 to -1123) and HRE-5 and HRE-6 (+234 to +241 and +812 to +820, respectively, within the intron sequence) were necessary and sufficient for the LANA-mediated HIF-1 alpha response. Electrophoretic mobility shift assays showed HIF-1 alpha-dependent binding of a LANA protein complex specifically to the HRE-2, -5, and -6 motifs within the promoter regulatory sequences. This study demonstrates that hypoxia-induced KSHV lytic replication is mediated at least in part through cooperation of HIF-1 alpha with LANA bound to the HRE motifs of the Rta promoter.