Boron doped CeO2/TiO2 mixed oxides photocatalysts were prepared by adding boric acid and cerous nitrate during the hydrolyzation of titanium trichloride and tetrabutyl titanate. XRD, UV-Vis DRS and XPS techniques were used to characterize the crystalline structure, light absorbing ability and the chemical state of Boron element in the photocatalyst sample. The photocatalytic activities were evaluated by monitoring the degradation of acid red B under UV irradiation. These results indicate that the wavelengths at adsorbing edge are affected by the content of cerous nitrate and the maximum absorption wavelength is about 481 nm when the mole ratio of Ce/Ti is 1.0. For higher dosage of Cerium, the absorbance edge shifts to blue slightly. The prepared photocatalyst is composed of anatase TiO2 and cubic CeO2 when calcined at 500 degrees C. An increase in the calcination temperature transforms the crystalline structure of the titanium oxides from anatase to rutile, and has no obvious influence on crystalline structure of CeO2 but crystallites growth up. The absorbance edge decreases drastically with the increase of calcination temperature. With a view to the stability of photocatalyst and utilization of sun energy, 500 degrees C of calcination temperature is recommended. The XP spectrum for B1s exhibits that only a few boron ions dope into titania and ceria matrix, others exist in B2O3. The photocatalytic activity increases with increase of cerous nitrate dosage, and decreases drastically due to higher dosage (the mol ratio of Ce/Ti > 0.5). After 10 min UV irradiation, 96% of acid red B is degraded completely over photocatalyst under optimum reaction condition.