Chemotaxis inhibitory protein of staphylococci (CHIPS) and Staphylococcal complement inhibitor (SCIN) are small, excreted molecules that play a crucial role in the staphylococcal defence against the human innate immune system. Here we show that they both counteract crucial acute responses of our immune system such as complement activation, neutrophil chemotaxis and neutrophil activation. By studying gene expression via promoter-green fluorescent protein fusions, Northern blots and protein expression analyses, we show that SCIN and CHIPS are produced during the early (exponential) growth stages. Although the SCIN and CHIPS genes are expressed simultaneously, they are differently regulated by various Staphylococcus aureus regulatory loci. However, the sae locus is crucial for upregulation of both SCIN and CHIPS. This is the first study that presents the expression of two extracellular S. aureus proteins early during growth. Because SCIN and CHIPS are both efficient modulators of neutrophil chemotaxis, phagocytosis and killing, their early expression is necessary for efficient modulation of the early immune response.