Effective methods of probing chromatin structure without disrupting DNA-protein interactions and associations are necessary for creating an accurate picture of chromatin and its processes in vivo. Expression of cytidine-5 DNA methyltransferases (C5 DMTases) in Saccharomyces cerevisiae provides a powerful noninvasive method of assaying relative DNA accessibility in chromatin. DNA MTases are occluded from protein-associated DNA based on the strength and span of the DNA-protein interaction. Ectopic regulation of C5 DMTase expression systems allows for minimal disruption of yeast physiology. Methylated sites are detected by bisulfite genomic sequencing, which leads to a positive signal corresponding to modified cytidine residues. High-resolution C5 DMTases with dinucleotide recognition specificity are shown to provide sufficient coverage to map interactions spanning a relatively short distance.