In order to evaluate the influence of membrane fluidization on three apical transport systems and on a basolateral enzyme, and to analyse the mechanisms involved, we studied, in cultured rabbit proximal tubular cells, the effect of increasing concentrations of the local anesthetic drug benzyl alcohol on Na(+)-dependent uptakes of phosphate (Pi), methyl alpha-D-glucopyranoside (MGP), and L-alanine, as well as on basal and stimulated cyclic AMP content. At 10 mM, benzyl alcohol increased the Vmax of Pi uptake by 31%, decreased that of MGP uptake by 24%, and did not affect alanine uptake. Km values were not affected. Benzyl alcohol, up to 40 mM, increased in a concentration-dependent manner basal, PTH-stimulated, and cholera toxin-stimulated, but not forskolin-stimulated cyclic AMP accumulation. In the presence of 40 mM benzyl alcohol, the magnitude of PTH-induced inhibition of Pi uptake was enhanced from 11% to 24%. It is concluded that: (i) fluidization of apical membranes affected differently Na+/Pi, Na+/MGP, and Na+/alanine cotransports, reflecting differences in the lipidic environments of these transport system; (ii) fluidization of basolateral membranes enhanced PTH-stimulated cyclic AMP generation through improved coupling between the receptor-GS complex and the catalytic subunit of adenylate cyclase; (iii) these variations may result in physiological and pathophysiological modulation of the renal handling of solutes and of the phosphaturic effect of PTH.