We investigated whether long-lasting stress induced by chronic glucocorticoid (GC) exposure affects activation of brain NF-kappaB and whether these changes are related to functional deterioration and structural changes in the rat hippocampus. Psychometric investigations were conducted using a holeboard test system in 28 one-year-old male Wistar rats. Thereafter, rats were divided into three groups for daily administration of 10 mg corticosterone (treatment) or sesame oil (placebo = sham control for effects of the vehicle) for 60 days. Additional control rats did not receive any treatment or handling until the end of the experiment. Behavioural and cognitive changes were tested again in the holeboard system. Rat body weights and corticosterone concentrations in plasma, hippocampus and urine were determined and adrenal glands were investigated histopathologically. Hippocampal concentrations of corticosterone, NF-kappaB and I-kappaBalpha were determined using RIA, EMSA and Western blotting techniques, respectively. Structural changes in rat hippocampus were measured using magnetic resonance imaging techniques. High peripheral corticosterone concentrations after chronic treatment led to significant reductions in rat body weight. Significant atrophy of both adrenal glands with marked histological deterioration was detected. Furthermore, an increase in hippocampal corticosterone concentrations was observed after chronic administration. Chronic corticosterone treatment also significantly altered behaviour and working and reference memory capacity without changing hippocampal structure. Daily injections of sesame oil in the placebo group, however, were also sufficient to reduce the pellet-finding time. However, neither in the corticosterone group nor in the placebo group were behavioural changes paralleled by significant changes in brain NF-kappaB activation and I-kappaBalpha expression. Thus, cognitive alterations in rats seen after chronic corticosterone exposure are not paralleled by hippocampal NF-kappaB modulation.