Platelet-derived growth factor BB (PDGF-BB) was an important inductive factor during wound healing, but the lack of efficient delivery system limited its clinical application. Here, a peptide of seven amino acids was firstly utilized to engineer PDGF-BB to construct a collagen-targeting system. This peptide functioned as collagen-binding domain (CBD) to specially target the PDGF-BB to the collagen and restrict its diffusion. In our study, in vitro activity assay showed that the CBD-fused PDGF (CBD-PDGF) and native PDGF (NAT-PDGF) possessed similar activity to stimulate the human fibroblast proliferation. As expected, this peptide promoted the binding of PDGF to collagen scaffolds, and CBD-PDGF caused more cells to proliferate on the collagen gel than NAT-PDGF when the same amounts of PDGF were added. In the in vivo experiment, CBD-PDGF-loaded collagen scaffolds were uniformly cellularized and vascularized compared to that of NAT-PDGF-loaded scaffolds. Our study demonstrated that the CBD targeted PDGF to the collagen scaffold to exert its functions, and it suggested this could be an effective system for targeting tissue regeneration and wound repair.