Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease

Immunol Rev. 2006 Aug:212:8-27. doi: 10.1111/j.0105-2896.2006.00427.x.

Abstract

Naturally arising CD25+ CD4+ regulatory T (Treg) cells, most of which are produced by the normal thymus as a functionally mature T-cell subpopulation, play key roles in the maintenance of immunologic self-tolerance and negative control of a variety of physiological and pathological immune responses. Natural Tregs specifically express Foxp3, a transcription factor that plays a critical role in their development and function. Complete depletion of Foxp3-expressing natural Tregs, whether they are CD25+ or CD25-, activates even weak or rare self-reactive T-cell clones, inducing severe and widespread autoimmune/inflammatory diseases. Natural Tregs are highly dependent on exogenously provided interleukin (IL)-2 for their survival in the periphery. In addition to Foxp3 and IL-2/IL-2 receptor, deficiency or functional alteration of other molecules, expressed by T cells or non-T cells, may affect the development/function of Tregs or self-reactive T cells, or both, and consequently tip the peripheral balance between the two populations toward autoimmunity. Elucidation of the molecular and cellular basis of this Treg-mediated active maintenance of self-tolerance will facilitate both our understanding of the pathogenetic mechanism of autoimmune disease and the development of novel methods of autoimmune disease prevention and treatment via enhancing and re-establishing Treg-mediated dominant control over self-reactive T cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Autoimmune Diseases / immunology*
  • Autoimmune Diseases / therapy
  • CD4 Antigens / analysis
  • Forkhead Transcription Factors / metabolism
  • Forkhead Transcription Factors / physiology*
  • Humans
  • Lymphocyte Activation
  • Mice
  • Receptors, Interleukin-2 / analysis*
  • Self Tolerance*
  • T-Lymphocytes, Regulatory / cytology
  • T-Lymphocytes, Regulatory / drug effects
  • T-Lymphocytes, Regulatory / immunology*

Substances

  • CD4 Antigens
  • FOXP3 protein, human
  • Forkhead Transcription Factors
  • Receptors, Interleukin-2