We show that the crystal orientation in polymer nanotubes and nanorods inside porous templates is controlled by the kinetics of nucleation and growth under 2D confinement. Two clear limiting cases are identified: In separated nanostructures, any crystal orientation allowing the growth of lamellar crystals along the pores appears statistically. If a bulklike surface film connects the nanostructures, macroscopic arrays with uniform crystal orientation are obtained, in which the dominant growth direction of the crystals is aligned with the long axes of the pores of the template.