Migration-driven aggregate growth on scale-free networks

Phys Rev Lett. 2006 Jul 14;97(2):028301. doi: 10.1103/PhysRevLett.97.028301. Epub 2006 Jul 10.

Abstract

We study the kinetics of migration-driven aggregate growth on completely connected scale-free networks. A reversible migration system is considered with the size-dependent rate kernel K(k; l/i;j) approximately k(u)i(v)(lj)(v), at which an i-mer aggregate located on the node with j links gains one monomer from a k-mer aggregate on the node with l links. The results show that the evolution behavior of the aggregate size distribution is drastically different from that for the corresponding same system in normal space. This model can be used to mimic some phenomena such as the distribution of city populations. Moreover, we verify our analytic results in good agreement with the data of the population distributions of all U.S. counties.