Small interfering RNAs (siRNAs) have been widely exploited for sequence-specific gene knockdown, predominantly to investigate gene function in cultured vertebrate cells, and also hold promise as therapeutic agents. Because not all siRNAs that are cognate to a given target mRNA are equally effective, computational tools have been developed based on experimental data to increase the likelihood of selecting effective siRNAs. Furthermore, because target-complementary siRNAs can also target other mRNAs containing sequence segments that are partially complementary to the siRNA, most computational tools include ways to reduce potential off-target effects in the siRNA selection process. Though these methods facilitate selection of functional siRNAs, they do not yet alleviate the need for experimental validation. This perspective provides a practical guide based on current wisdom for selecting siRNAs.