Concerning the different roles of cations in metallic Zintl phases: Ba7Ga4Sb9 as a test case

Inorg Chem. 2006 Sep 4;45(18):7235-41. doi: 10.1021/ic0608187.

Abstract

The question of the different roles of cations in metallic Zintl phases has been examined by taking Ba7Ga4Sb9, an electron-rich phase, as a test case. The electronic structure of this solid has been studied by means of a first-principles density functional theory approach and, indeed, the different Ba atoms are found to play very different roles in determining the structural and transport properties of this phase. It is also found that Ba7Ga4Sb9 should be an anisotropic metal with both one- and three-dimensional contributions to the Fermi surface so that the system could exhibit a potentially very interesting physical behavior while keeping the metallic properties down to very low temperatures. Suggestions in order to modify the band filling and the physical properties are examined. Although isostructural electron-precise phases may be envisioned, it is predicted that they would be essentially three-dimensional metals.